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Abstract 

Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of 
reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the sys- 
tem. In this paper we show how boolean decision procedures, like Stälmarck's Method [16] or the 
Davis & Putnam Procedure [7], can replace BDDs. This new technique avoids the space blow up 
of BDDs, generates counterexamples much faster, and sometimes speeds up the verification. In 
addition, it produces counterexamples of minimal length. We introduce a bounded model check- 
ing procedure for LTL which reduces model checking to prepositional satisfiability. We show that 
bounded LTL model checking can be done without a tableau construction. We have implemented 
a model checker BMC, based on bounded model checking, and preliminary results are presented. 



1   Introduction 

Model checking [4] is a powerful technique for verifying reactive systems. Able to find 
subtle errors in real commercial designs, it is gaining wide industrial acceptance. Com- 
pared to other formal verification techniques (e.g. theorem proving) model checking is 
largely automatic. 

In model checking, the specification is expressed in temporal logic and the sys- 
tem is modeled as a finite state machine. For realistic designs, the number of states of 
the system can be very large and the explicit traversal of the state space becomes in- 
feasible. Symbolic model checking [3, 14], with boolean encoding of the finite state 
machine, can handle more than 1020 states. BDDs [2], a canonical form for boolean 
expressions, have traditionally been used as the underlying representation for symbolic 
model checkers [14]. Model checkers based on BDDs are usually able to handle sys- 
tems with hundreds of state variables. However, for larger systems the BDDs generated 
during model checking become too large for currently available computers. In addition, 
selecting the right ordering of BDD variables is very important. The generation of a 
variable ordering that results in small BDDs is often time consuming or needs manual 
intervention. For many examples no space efficient variable ordering exists. 

Propositional decision procedures (SAT) [7] also operate on boolean expressions 
but do not use canonical forms. They do not suffer from the potential space explosion 
of BDDs and can handle propositional satisfiability problems with thousands of vari- 
ables. SAT based techniques have been successfully applied in various domains, such 
as hardware verification [17], modal logics [9], formal verification of railway control 
systems [1], and AI planning systems [11]. A number of efficient implementations are 
available. Some notable examples are the PROVE tool [1] based on Stalmarck's Method 
[16], and SATO [18] based on the Davis & Putnam Procedure [7]. 

In this paper we present a symbolic model checking technique based on SAT pro- 
cedures. The basic idea is to consider counterexamples of a particular length k and 
generate a propositional formula that is satisfiable iff such a counterexample exists. In 
particular, we introduce the notion of bounded model checking, where the bound is the 
maximal length of a counterexample. We show that bounded model checking for lin- 
ear temporal logic (LTL) can be reduced to propositional satisfiability in polynomial 
time. To prove the correctness and completeness of our technique, we establish a cor- 
respondence between bounded model checking and model checking in general. Unlike 
previous approaches to LTL model checking, our method does not require a tableau or 
automaton construction. 

The main advantages of our technique are the following. First, bounded model 
checking finds counterexamples very fast. This is due to the depth first nature of SAT 
search procedures. Finding counterexamples is arguably the most important feature of 
model checking. Second, it finds counterexamples of minimal length. This feature helps 
the user to understand a counterexample more easily. Third, bounded model check- 
ing uses much less space than BDD based approaches. Finally, unlike BDD based ap- 
proaches, bounded model checking does not need a manually selected variable order or 
time consuming dynamic reordering. Default splitting heuristics are usually sufficient. 

To evaluate our ideas we have implemented a tool BMC based on bounded model 
checking. We give examples in which SAT based model checking significantly out- 



performs BDD based model checking. In some cases bounded model checking detects 
errors instantly, while the BDDs for the initial state cannot be built. 

The paper is organized as follows. In the following section we explain the basic 
idea of bounded model checking with an example. In Section 3 we give the semantics 
for bounded model checking. Section 4 explains the translation of a bounded model 
checking problem into a propositional satisfiability problem. In Section 5 we discuss 
bounds on the length of counterexamples. In Section 6 our experimental results are 
presented, and Section 7 describes some directions for future research. 

2   Example 

Consider the following simple state machine M that consists of a three bit shift register 
x with the individual bits denoted by *[0],*[1], and x[2]. The predicate T(x,xl) denotes 
the transition relation between current state values x and next state values xl and is 
equivalent to: 

(*'[0]=*[l])A(V[l]=*[2])A(y[2]=l) 

In the initial state the content of the register x can be arbitrary. The predicate I(x) that 
denotes the set of initial states is true. 

This shift register is meant to be empty (all bits set to zero) after three consecu- 
tive shifts. But we introduced an error in the transition relation for the next state value 
of x[2], where an incorrect value 1 is used instead of 0. Therefore, the property, that 
eventually the register will be empty (written as x — 0) after a sufficiently large number 
of steps is not valid. This property can be formulated as the LTL formula F(x = 0). 
We translate the "universal" model checking problem AF(x = 0) into the "existential" 
model checking problem EG(* ± 0) by negating the formula Then, we check if there 
is an execution sequence that fulfills G(x ~L 0). Instead of searching for an arbitrary 
path, we restrict ourselves to paths that have at most k+1 states, for instance we choose 
k=2. Call the first three states of this path XQ, X\ and X2 and let XQ be the initial state (see 
Figure 1). Since the initial content of x can be arbitrary, we do not have any restriction 

Lo 
Ll 

lv°] ATjfO] x2[0] 

*0m *,[1] x2[l] 

V2i xxm *2m 

L2 

Fig. 1. Unrolling the transition relation twice and adding a back loop. 

on xo. We unroll the transition relation twice and derive the propositional formula fm 

defined as I(xo) A T{XQ,XI) A T(x\, x2). We expand the definition of T and /, and get the 



following formula. 

(*i[0] =*ö[1]) A (*i[l] =*ö[2]) A (JCI[2] = 1) A 1st step 

(x2[0] = xi [1]) A (x2[l] = xi [2]) A [x2[2] = 1) 2nd step 

Any path with three states that is a "witness" for G(x ^ 0) must contain a loop. Thus, 
we require that there is a transition from x2 back to the initial state, to the second state, 
or to itself (see also Figure 1). We represent this transition as L, defined as T(x2,xi) 
which is equivalent to the following formula. 

(Xi[0]=x2[l}) A (xi{\] =x2[2]) A (Xi[2] = 1) 

Finally, we have to make sure that this path will fulfill the constraints imposed by the 
formula G(x ^ 0). In this case the property 5,- defined as Xj ^ 0 has to hold at each state. 
Sj is equivalent to the following formula. 

(xi[0} = l)V(xi[l] = l)V(xi[2] = l) 

Putting this all together we derive the following propositional formula. 

2 2 

fMA\jLiA/\Si (1) 
i=0 1=0 

This formula is satisfiable iff there is a counterexample of length 2 for the original 
formula F(JC = 0). In our example we find a satisfying assignment for (1) by setting 
*;[/]:=l for alii, ;' = 0,1,2. 

3   Semantics 

ACTL* is defined as the subset of formulas of CTL* [8] that are in negation normal 
form and contain only universal path quantifiers. A formula is in negation normal 
form (NNF) if negations only occur in front of atomic propositions. ECTL* is de- 
fined in the same way, but only existential path quantifiers are allowed. We consider 
the next time operator 'X', the eventuality operator 'F', the globally operator 'G', and 
the until operator 'U'. We assume that formulas are in NNF. We can always transform 
a formula in NNF without increasing its size by including the release operator 'R' 
(/R g iff -i(-i/U -■£)). In an LTL formula no path quantifiers (E or A) are allowed. In 
this paper we concentrate on LTL model checking. Our technique can be extended to 
handle full ACTL* (resp. ECTL*). 

Definition 1. A Kripke structure is a tuple M = (S,I, T,£) with a finite set of states S, 
the set of initial states I C S, a transition relation between states T C S x S, and the 
labeling of the states t.S—t !P(ßL) with atomic propositions ßl. 

We use Kripke structures as models in order to give the semantics of the logic. For 
the rest of the paper we consider only Kripke structures for which we have a boolean en- 
coding. We require that S = {0,1}", and that each state can be represented by a vector of 



State variables s = (s(l),. ..,s(n)) where s(i) for i= 1,..., n are prepositional variables. 
We define prepositional formulas fi(s), fr{s,t) and fp(s) as: fj{s) iff* G /, fr{s,t) iff 
(j,f) G r, and fp(s) iff/> G t(s). For the rest of the paper we simply use T(s,t) instead 
of fy(s, t) etc. In addition, we require that every state has a successor state. That is, for 
all s G S there is a t G S with (s, f) G 7\ For (s, f) G r we also write s->t. For an infinite 
sequence of states JI = (so, Ji, • ■ •) we define jt(i) = s,- and n' = (J,-,S,+I, ...) for i G IN. 
An infinite sequence of states n is a.path if n(i) -> re(i + 1) for all i G IN. 

Definition 2 (Semantics). Let M be a Kripke structure, nbe a path in M and f be an 
LTL formula. Then n\=f(f is valid along n) is defined as follows. 

itN? W pet(n{0)) nJF^P     ^   />^W°)) 
rch/Ag iff n\=fandn\=g       n^=fVg    iff   n)=forn\=g 

n\=Gf iff Vr.7i'>/ n\=Yf       iff   3i.n'>/ 

n\=Xf iff Tt1^/ 

n\=fVg iff 3i[n!\=g and   Vj,j<i.Ki\=f] 

n\=fRg iff Vi[i<?\=g   or    3j,j<i.nl\=f] 

Definition 3 (Validity). A« LTL formula f is universally valid in a Kripke structure M 
(in symbols M (= Af) iffn |= f for all paths n in M with TC(0) G /. An LTL formula f is 
existentially valid in a Kripke structure M (in symbols M (= E/J iff there exists a path 
n in M with n \= f and 7c(0) G /. 

Determining whether an LTL formula / is existentially (resp. universally) valid in a 
given Kripke structure is called an existential (resp. universal) model checking problem. 

In conformance to the semantics of CTL* [8], it is clear that an LTL formula/ is 
universally valid in a Kripke structure M iff ->/ is not existentially valid. In order to 
solve the universal model checking problem, we negate the formula and show that the 
existential model checking problem for the negated formula has no solution. Intuitively, 
we are trying to find a counterexample, and if we do not succeed then the formula 
is universally valid. Therefore, in the theory part of the paper we only consider the 
existential model checking problem. 

The basic idea of bounded model checking is to consider only a finite prefix of a path 
that may be a solution to an existential model checking problem. We restrict the length 
of the prefix by a certain bound k. In practice we progressively increase the bound, 
looking for longer and longer possible counterexamples. 

A crucial observation is that, though the prefix of a path is finite, it still might repre- 
sent an infinite path if there is a back loop from the last state of the prefix to any of the 
previous states (see Figure 2(b)). If there is no such back loop (see Figure 2(a)), then 
the prefix does not say anything about the infinite behavior of the path. For instance, 
only a prefix with a back loop can represent a witness for Gp. Even if p holds along all 
the states from so to Sk, but there is no back loop from s^ to a previous state, then we 
cannot conclude that we have found a witness for Gp, since p might not hold at st+i- 

Definition 4. For I <kwe call a path n a (k, /)-loop ifn(k) ->«(/) and % = uva> with 
u = (JC(0) ,..., n(l - 1)) and v = (iz(l),..., n(k)). We call n simply a Moop if there is 
an I G IN with I < kfor which n is a (k, l)-loop. 
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(a)    no loop (b)    (it,/)-loop 

Fig. 2. The two cases for a bounded path. 

We give a bounded semantics that is an approximation to the unbounded semantics 
of Definition 2. It allows us to define the bounded model checking problem and in the 
next section we will give a translation of a bounded model checking problem into a 
satisfiability problem. 

In the bounded semantics we only consider a finite prefix of a path. In particular, 
we only use the first k + 1 states (so, ■ ■ ■, sk) of a path to determine the validity of a 
formula along that path. If a path is a &-loop then we simply maintain the original LTL 
semantics, since all the information about this (infinite) path is contained in the prefix 
of length k. 

Definition 5 (Bounded Semantics for a Loop). Let k e IN and it be a k-loop. Then an 
LTL formula f is valid along the path n with bound k (in symbols it \=k f) iff it f= /. 

Assume that it is not a fc-loop. Then the formula / := ¥p is valid along % in the 
unbounded semantics if we can find an index / e IN such that p is valid along the suffix 
it' of Ji. In the bounded semantics the (k+ l)-th state n(k) does not have a successor. 
Therefore, we cannot define the bounded semantics recursively over suffixes (e.g. it') of 
7i. We keep the original 7t instead but add a parameter i in the definition of the bounded 
semantics and use the notation \='k. The parameter i is the current position in the prefix 
of it. In Lemma 7 we will show that 7t \='k f implies n' \= f. 

Definition 6 (Bounded Semantics without a Loop). Let k G IN, and let it be a path 
that is not a k-loop. Then an LTL formula f is valid along 7t with bound k (in symbols 
K^kf)iffK\=°kf where 

iK/A? iff   n\='kfandn\='kg       n\='kfWg    iff   n ^k f or it \=[ g 

n |4 G/ is always false it \='k F/        iff    3j, i<j<k.n\=J
kf 

lt\=kXf iff    i<kandK\='+1f 

i|=i/U* iff    3j,i<j<k[it\=J
kg and  Vn, i<n< j.it\=»f] 

it \='k fRg iff    3j, i<j<k[n^{f and  Vn, i<n<j.it\="kg] 

Note that if it is not a &-loop, then we say that G/ is not valid along it in the bounded 
semantics with bound k since / might not hold along 7i*+ x. Similarly, the case f or / R g 
where g always holds and / is never fulfilled has to be excluded. These constraints 



<=> 3j 

=> 3j 

=> 3; 

imply that for the bounded semantics the duality of G and F (->Ff = G-i/) and the 
duality of R and U (-> {fUg) = (->/) R (-#)) no longer hold. 

The existential and universal bounded model checking problems are defined in the 
same manner as in Definition 3. Now we describe how the existential model checking 
problem (M \= E/) can be reduced to a bounded existential model checking problem 
(AfhtE/). 

Lemma 7. Let h be an LTL formula and % a path, then %\=kh => n\=h 

Proof. If n is a jfc-loop then the conclusion follows by definition. In the other case we 
assume that % is not a loop. Then we prove by induction over the structure of / and 
i < k the stronger property TC (=£ Ä =>■ it' (= h. We only consider the most complicated 
case h — f R g. 

n\='kfRg   <^   3j, i<j<k[n\=J
kf and Vn, i<n< j.n\=n

kg] 

i < j < k [nJ \= f and Vn, i < n < j. nn \= g] 

i<j[nj\=f and Vn, i < n < j.%n \= g] 

Let f = j — i and n' = n — i 

=>   3/ [ ni+J' \= f and Mri, n' < f. ni+n' \= g ] 

=>    3j [ (it'V' N / and Vn, n < j. (%')n (= * ] 

=*■    Vn [ (7t'')n N 5 or 3y, j < n. (TC'V |= / ] 

=*■    it*|=/Rg 

In the next-to-last step we used the following fact: 

3m[7tm|=/andV/,/<m.7c,|=g]     =4>    Vn [%n \=gorlj, j< n. nj (=/] 

Assume that m is the smallest number such that nm \= f and %l \= g for all / with / < m. 
In the first case we consider n> m. Based on the assumption, there exists j <n such 
that nJ \= f (choose j - m). The second case is n < m. Because nl \= g for all/ < m we 
have nn \= g for all n < m. Thus, for all n we have proven that the disjunction on the 
right hand side is fulfilled. O 

Lemma 8. Let f be an LTL formula f and M a Kripke structure. IfM \= E/ then there 
exists k G IN with M \=k E/ 

Proof. In [3, 5,12] it is shown that an existential model checking problem for an LTL 
formula / can be reduced to FairCTL model checking of the formula EGtrue in a 
certain product Kripke structure. This Kripke structure is the product of the original 
Kripke structure and a "tableau" that is exponential in the size of the formula / in the 
worst case. If the LTL formula / is existentially valid in M then there exists a path 
in the product structure that starts with an initial state and ends with a cycle in the 
strongly connected component of fair states. This path can be chosen to be a &-loop 
with k bounded by \S\ ■ 2^1 which is the size of the product structure. If we project this 
path onto its first component, the original Kripke structure, then we get a path n that is 
a Moop and in addition fulfills JI |= /. By definition of the bounded semantics this also 
implies n \=k f. n 



The main theorem of this section states that, if we take all possible bounds into 
account, then the bounded and unbounded semantics are equivalent. 

Theorem 9. Let f be an LTL formula, M a Kripke structure. Then M \= E/ iff there 
exists keJN with M (=& E/. 

4   Translation 

In the previous section, we defined the semantics for bounded model checking. We now 
reduce bounded model checking to propositional satisfiability. This reduction enables 
us to use efficient propositional decision procedures to perform model checking. 

Given a Kripke structure M, an LTL formula / and a bound k, we will construct a 
propositional formula [Af,/]^ The variables so, ■ ■ .,$* in [ Af,/Jt denote a finite se- 
quence of states on a path n. Each *,- is a vector of state variables. The formula [ M, f\ 
essentially represents constraints on so, • • -,** such that JM,/^ is satisfiable iff / is 
valid along %. 

The size of [ Af,/]A is polynomial in the size of/ if common subformulas are 
shared (as in our tool BMC). It is quadratic in k and linear in the size of the propositional 
formulas for T, I and the p £ SI. Thus, existential bounded model checking can be 
reduced in polynomial time to propositional satisfiability. 

To construct [[ M, / \, we first define a propositional formula ([ M Jk that constrains 
so, ■ ■ ■, Sk to be on a valid path n in M. Second, we give the translation of an LTL formula 
/ to a propositional formula that constrains n to satisfy /. 

Definition 10 (Unfolding the Transition Relation). For a Kripke structure M, k £ IN 

4-1 

lM\:=I{so)/\ f\T(st,sM) 

Depending on whether a path is a &-loop or not (see Figure 2), we have two different 
translations of the temporal formula /. In Definition 11 we describe the translation if 
the path is not a loop ("| ■ Jj"). The more technical translation where the path is a loop 

("/I' It") is given in Definition 13. 
Consider the formula h:= pJJ q and a path % that is not a fc-loop for a given k £ IN 

(see Figure 2(a)). Starting at %' for i £ IN with i < k the formula h is valid along n' with 
respect to the bounded semantics iff there is a position j with i < j < k and q holds 
at %(j). In addition, for all states n(n) with n £ IN starting at n(i) up to n(j — 1) the 
proposition p has to be fulfilled. Therefore the translation is simply a disjunction over 
all possible positions j at which q eventually might hold. For each of these positions 
a conjunction is added that ensures that p holds along the path from n(i) to n(j — 1). 
Similar reasoning leads to the translation of the other temporal operators. 

The translation "[[ • fk" maps an LTL formula into a propositional formula. The 
parameter k is the length of the prefix of the path that we consider and i is the current 
position in this prefix (see Figure 2(a)). When we recursively process subformulas, i 
changes but k stays the same. Note that we define the translation of any formula G/ as 
false. This translation is consistent with the bounded semantics. 



Definition 11 (Translation of an LTL Formula without a Loop). For an LTL formula 
f and k, i G IN, with i < k 

= P(si) l^pft 

= i/tnst   ifvgt 
= false [F/Ii 

= ifi<k then lffk
+1 else false 

= vU{l8li * tälfll 

=    -'Pint) 

= v%mi 

ILPJI* 

IfVgt 

Now we consider the case where the path is a fc-loop. The translation "t [[ • fk" of an 
LTL formula depends on the current position i and on the length of the prefix k. It also 
depends on the position where the loop starts (see Figure 2(b)). This position is denoted 
by / for Zoop. 

Definition 12 (Successor in a Loop). Let k, I, i G IN, with I, i < k. Define the successor 
succ(i') ofi in a (k, l)-loop as succ(i) := / + I for i < k and succ(i) := I fort — k. 

Definition 13 (Translation of an LTL Formula for a Loop). Let f be an LTL formula, 
k,l,iGIN, withl,i<k. 

dPFk 

/E/AgJ 

ilGfJ 

/Ex/] 

ilfVgfk 

pißt) 

:mm(i,2) Aft 

A-Pik 

lifVgt 

-ip(si) 

Aft v Ast 
V'j=rm\ii,l) Af\ 

y%\{Ast A A*=,- Aft A At/1 AfTk) 
llf*gt     ■=     A*=min(,V) list V 

V5I1/(I[/^AA!U//E*KAAL»I[*1* 

The translation of the formula depends on the shape of the path (whether it is a loop 
or not). We now define a loop condition to distinguish these cases. 

Definition 14 (Loop Condition).For k,I G IN, let iLk:=T(sk,si),Lk:= Vf=o l^k 

Definition 15 (General Translation). Let f be an LTL formula, M a Kripke structure 
and k G IN 

lM,/]t:=[M],An^LfcAl/l°) V V (lU^ilft)) 



The left side of the disjunction is the case where there is no back loop and the 
translation without a loop is used. On the right side all possible starts / of a loop are 
tried and the translation for a (k, /)-loop is conjuncted with the corresponding iLk loop 
condition. 

Theorem 16. [ M ,f\ is satisfiable iffM [=* E/. 

Corollary 17. M \= A->/ iff IM, f}k is unsatisfiablefor all k £ IN. 

5   Determining the bound 

In Section 3 we have shown that the unbounded semantics is equivalent to the bounded 
semantics if we consider all possible bounds. This equivalence leads to a straightfor- 
ward LTL model checking procedure. To check whether M \= E/, the procedure checks 
M \=k E/ for k = 0,1,2,.... If M \=k E/, then the procedure proves that M \= E/ and 
produces a witness of length k. If M \£ E/, we have to increment the value of k indefi- 
nitely, and the procedure does not terminate. In this section we establish several bounds 
on k. If M \^k E/ for all k within the bound, we conclude that M \k E/. 

5.1   ECTL 

ECTL is a subset of ECTL* where each temporal operator is preceded by one existential 
path quantifier. We have extended bounded model checking to handle ECTL formulas. 
Semantics and translation for ECTL formulas can be found in the full version of this 
paper. In general, better bounds can be derived for ECTL formulas than for LTL formu- 
las. The intersection of the two sets of formulas includes many temporal properties of 
practical interest (e.g. EFp and EG/?). Therefore, we include the discussion of bounds 
for ECTL formulas in this section. 

Theorem 18. Given an ECTL formula f and a Kripke structure M. Let \M\ be the 
number of states in M, then M |= E/ iff there exists k < \M\ with M \=k E/. 

In symbolic model checking, the number of states in a Kripke structure is bounded 
by 2", where n is the number of boolean variables to encode the Kripke structure. 
Typical model checking problems involve Kripke structures with tens or hundreds of 
boolean variables. The bound given in Theorem 18 is often too large for practical prob- 
lems. 

Definition 19 (Diameter). Given a Kripke structure M, the diameter ofM is the mini- 
mal number d G IN with the following property. For every sequence of states so,..-, s^+1 
with (st,Si+i) G Tfor i < d, there exists a sequence of states to,- ■ -,ti where I <d such 
that to = so, ti = s<j+i and (tj, tj+\) G T'for j < I. In other words, if a state v is reachable 
from a state u, then v is reachable from u via a path of length d or less. 

Theorem 20. Given an ECTL formula f := EFp and a Kripke structure M with diam- 
eter d,M\= EFp iff there exists k<d with M \=k EFp. 



Theorem 21. Given a Kripke structure M, its diameter d is the minimal number that 
satisfies the following formula. 

d d-\ d 

VJ0. • • •, sj+i. 3f0, • ■ •, td- A r(*. *+i) -> («D = *0 A /\ T(ti,ti+i) A\fti = sd+i) 
,=0 i'=0 i=0 

For a Kripke structure with explicit state representation, well-known graph algo- 
rithms can be used to determine its diameter. For a Kripke structure M with a boolean 
encoding, one may verify that d is indeed a diameter of M by evaluating a quantified 
boolean formula (QBF), shown in Theorem 21. We conjecture that a quantified boolean 
formula is necessary to express the property that d is the diameter of M. Unfortunately, 
we do not know of an efficient decision procedure for QBF. 

Definition 22 (Recurrence Diameter). Given a Kripke structure M, its recurrence di- 
ameter is the minimal number d € IN with the following property. For every sequence 
of states s0,...,sd+i with (s,, si+ \)eTfori<d, there exists j<d such that sd+1 = Sj. 

Theorem 23. Given an ECTL formula f and a Kripke structure M with recurrence 
diameter d, M\=Ef iff there exists k<d with M (=* E/. 

Theorem 24. Given any Kripke structure M, its recurrence diameter d is the minimal 
number that satisfies the following formula 

d d 

Vso,...,sd+\. /\T(si,si+i) -» \Jst = sd+i 
i=0 i=0 

The recurrence diameter in Definition 22 is a bound on k for bounded model check- 
ing that is applicable for all ECTL formulas. The property of a recurrence diameter can 
be expressed as a propositional formula as shown in Theorem 24. We may use a propo- 
sitional decision procedure to determine whether a number d is the recurrence diameter 
of a Kripke structure. The bound based on recurrence diameter is not as tight as that 
based on the diameter. For example, in a fully connected Kripke structure, the graph 
diameter is 1 while the recurrence diameter equals the number of states. 

5.2   LTL 

LTL model checking is known to be PSPACE-complete [15]. In section 4, we reduced 
bounded LTL model checking to propositional satisfiability and thus showed that it is in 
NP. Therefore, a polynomial bound on k with respect to the size of M and / for which 
M \=k E/ <£> M f= E/ is unlikely to be found. Otherwise, there would be a polyno- 
mial reduction of LTL model checking problems to propositional satisfiability and thus 
PSPACE = NP. 

Theorem 25. Given an LTL formula f and a Kripke structure M, let \M\ be the number 
of states in M, then M\=Ef iff there exists k < \M\ x 2^1 with M \=k E/. 

For the subset of LTL formulas that involves only temporal operators F and G, LTL 
model checking is NP-complete [15]. For this subset of LTL formulas, it can be shown 
that there exists a bound on k linear in the number of states and the size of the formula. 



Definition 26 (Loop Diameter). We say a Kripke structure M is lasso shaped if every 
path p starting from an initial state is of the form upVp, where up and vp are finite 
sequences of length less or equal to u and v, respectively. We define the loop diameter 
ofMas (u,v). 

Theorem 27. Given an LTL formula f and a lasso-shaped Kripke structure M, let the 
loop diameter ofM be (u, v), then M (= E/ iff there exists k<u + v with M \=k E/. 

Theorem 27 shows that for a restricted class of Kripke structures, small bounds on 
k exist. In particular, if a Kripke structure is lasso shaped, k is bounded by u + v, where 
(u, v) is the loop diameter of M. 

6   Experimental Results 

We have implemented a model checker BMC based on bounded model checking. Its 
input language is a subset of the SMV language [14]. It outputs a SMV program or 
a propositional formula. For the propositional output mode, two different formats are 
supported. The first format is the DIMACS format [10] for satisfiability problems. The 
SATO tool [18] is a very efficient implementation of the Davis & Putnam Procedure [7] 
and it uses the DIMACS format. We also support the input format of the PROVE Tool 
[1] which is based on Stälmarck's Method [16]. 

As benchmarks we chose examples where BDDs are known to behave badly. First 
we investigated a sequential multiplier, the sequential shift and add multiplier of [6]. 
We formulated as model checking problem the following property: when the sequential 
multiplier is finished its output is the same as the output of a combinational multiplier 
(the C6288 circuit from the ISCAS'85 benchmarks) applied to the same input words. 
These multipliers are 16x16 bit multipliers but we only allowed 16 output bits as in [6] 
together with an overflow bit. We proved the property for each output bit individually 
and the results are shown in Table 1. For SATO we conducted two experiments to study 
the effect of the '-g' parameter that controls the maximal size of cached clauses. We 
picked a very small value ('-g 5') and a very large value ('-g 50'). Note that the overflow 
bit depends on all the bits of the sequential multiplier and occurs in the specification. 
Thus, cone of influence reduction could not remove anything. 

In the column SMVi of Table 1 the official version of the CMU model checker 
SMV was used. SMV2 is a version by Bwolen Yang from CMU with improved support 
for conjunctive partitioning. We used a manually chosen variable ordering where the 
bits of registers are interleaved. Dynamic reordering failed to find a considerably better 
ordering in a reasonable amount of time. 

We used a barrel shifter as another example. It rotates the contents of a register file 
b with each step by one position. The model also contains another register file r that is 
related to b in the following way. If a register in r and one in b have the same contents 
then their neighbors also have the same contents. This property holds in the initial state 
of the model, and we proved that it is valid in all successor states. The results of this 
experiment can be found in Table 2. The width of the registers is chosen to be [log2 |r|] 
where \r\ is the number of registers in the register file r. In this case we were also able 



SMVi SMV2 SATO -g5 SATO -g50 PROVE 

bit sec MB sec MB sec MB sec MB sec MB 

0 919 13 25 79 0 0 0   1 0  1 

1 1978 13 25 79 0 0 0   1 0  1 

2 2916 13 26 80 0 0 0  2 0  1 

3 4744 13 27 82 0 0 0  3 1  2 

4 6580 15 33 92 2 0 3   4 1  2 

5 10803 25 67 102 12 0 36  7 1  2 

6 43983 73 258 172 55 0 208 10 2  2 

7 >17h 1741 492 209 0 642 13 7  3 

8 >1GB 473 0 1198 16 29 3 

9 856 1 2413 20 58  3 

10 1837 1 2055 20 91  3 

11 2367 1 1667 19 125 3 

12 3830 1 976 17 156 4 

13 5128 1 4363 25 186 4 

14 4752 1 2170 23 226 4 

15 4449 1 6847 31 183 5 

sum 71923 2202 23970 22578 1066 

Table 1.16x16 bit sequential shift and add multiplier with overflow flag and 16 output bits (sec 
= seconds, MB = Mega Byte). 

to prove the recurrence diameter (see Definition 22) to be \r\. This took only very little 
time compared to the total verification time and is shown in the column "diameter". 

In [13] an asynchronous circuit for distributed mutual exclusion is described. It con- 
sists of n cells for n users that want to have exclusive access to a shared resource. We 
proved the liveness property that a request for using the resource will eventually be 
acknowledged. This liveness property is only true if each asynchronous gate does not 
delay execution indefinitely. We model this assumption by a fairness constraint for each 
individual gate. Each cell has exactly 18 gates and therefore the model has n ■ 18 fairness 
constraints where n is the number of cells. Since we do not have a bound for the max- 
imal length of a counterexample for the verification of this circuit we could not verify 
the liveness property completely. We only showed that there are no counterexamples of 
particular length k. To illustrate the performance of bounded model checking we have 
chosen k = 5,10. The results can be found in Table 3. 

We repeated the experiment with a buggy design. For the liveness property we sim- 
ply removed several fairness constraints. Both PROVE and SATO generate a counterex- 
ample (a 2-loop) instantly (see Table 4). 

7    Conclusion 

This work is the first step in applying SAT procedures to symbolic model checking. 
We believe that our technique has the potential to handle much larger designs than 
what is currently possible. Towards this goal, we propose several promising directions 



of research. We would like to investigate how to use domain knowledge to guide the 
search in SAT procedures. New techniques are needed to determine the diameter of a 
system. In particular, it would be interesting to study efficient decision procedures for 
QBE Combining bounded model checking with other state space reduction techniques 
presents another interesting problem. 

SMV2 SATO -glOO 
diameter 

SATO -g20 PROVE 
diameter 

PROVE 

\r\ sec   MB sec    MB sec MB sec MB sec MB 
3 1      49 0        1 0 0 0     1 0     1 
4 1      49 0        1 0 1 0     1 0     1 
5 13     83 0        2 60 2 0     1 1     2 
6 509   447 1        4 364 4 0     1 2    3 
7 >1GB 3        6 1252 6 0     2 2    4 
8 5        8 2160 9 0     2 7    5 
9 25       14 >21h 0     3 16   9 
10 42      19 1     4 55   11 

Table 2. Barrel shifter (|r| = number of registers, sec = seconds, MB = Mega Bytes). 

SMVi SMV2 SATO PROVE SATO PROVE 
k = 5 k-- = 5 k = 10 it =10 

cells sec   MB sec    MB sec MB sec MB sec MB sec MB 
4 846    11 159    217 0 3 1 3 3 6 54    5 
5 2166   15 530    703 0 4 2 3 9 8 95     5 
6 4857   18 1762   703 0 4 3 3 7 9 149    6 
7 9985   24 6563   833 0 5 4 4 15 10 224    8 
8 19595 31 >1GB 1 6 6 5 16 12 323    8 
9 >10h 1 6 9 5 24 13 444    9 
10 1 7 10 5 36 15 614   10 
11 1 8 13 6 38 16 820   11 
12 1 9 16 6 40 18 1044 11 
13 1 9 19 8 107 19 1317 12 
14 1 10 22 8 70 21 1634 14 
15 1 11 27 8 168 22 1992 15 

Table 3. Liveness for one user in the DME (sec = seconds, MB = Mega Bytes). 



cells 
SMVi 

sec     MB 
SMV2 

sec MB 
SATO 

sec MB 
PROVE 
sec MB 

4 799      11 14    44 0 1 0    2 
5 1661     14 24    57 0 1 0    2 
6 3155     21 40   76 0 1 0    2 
7 
8 

5622     38 
9449     73 

74   137 
118 217 

0 
0 

1 
1 

0    2 
0    2 

9 
10 

segmentation 
fault 

172 220 
244 702 

0 
0 

1 
1 

1     2 
0     3 

11 413 702 0 1 0     3 
12 719 702 0 2 1     3 
13 843 702 0 2 1     3 
14 1060 702 0 2 1     3 
15 1429 702 0 2 1     3 

Table 4. Counterexample for liveness in a buggy DME (sec = seconds, MB = Mega Bytes). 

References 

[1] Arne Borälv. The industrial success of verification tools based on Stälmarck's Method. 
In Oma Grumberg, editor, International Conference on Computer-Aided Verification 
(CAV'97), number 1254inLNCS. Springer-Verlag, 1997. 

[2] R. E. Bryant. Graph-based algorithms for boolean function manipulation, IEEE Transac- 
tions on Computers, 35(8):677'-691,1986. 

[3] J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model checking: 1020 states and 
beyond. Information and Computation, 98:142-170,1992. 

[4] E. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using 
branching time temporal logic. In Proceedings of the IBM Workshop on Logics of Pro- 
grams, volume 131 of LNCS, pages 52-71. Springer-Verlag, 1981. 

[5] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking. In 
David L. Dill, editor, Computer Aided Verification, 6th International Conference (CAV'94), 
volume 818 of LNCS, pages 415-427. Springer-Verlag, June 1994. 

[6] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstraction. 
ACM Transactions on Programming Languages and Systems, 16(5):1512-1542,1994. 

[7] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the 
Association for Computing Machinery, 7:201-215,1960. 

[8] E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time strikes back. 
Science of Computer Programming, 8:275-306,1986. 

[9] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from 
propositional decision procedures - the case study of modal K. In Proc. of the 13th Con- 
ference on Automated Deduction, Lecture Notes in Artificial Intelligence. Springer-Verlag, 
1996. 

[10] D. S. Johnson and M. A. Trick, editors. The secondDIMACS implementation challenge, 
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1993. (see 
http://dimacs.rutgers.edu/Challenges/). 

[11] H. Kautz and B. Selman. Pushing the envelope: planning, propositional logic, and stochas- 
tic search. In Proc. AAAI'96, Portland, OR, 1996. 



[12] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their 
linear specification. In Poceedings of the Twelfth Annual ACM Symposium on Principles of 
Programming Languages, pages 97-107,1985. 

[13] A. J. Martin. The design of a self-timed circuit for distributed mutual exclusion. In 
H. Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference on Very Large Scale 
Integration, 1985. 

[14] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. 
Kluwer Academic Publishers, 1993. 

[15] A. P. Sistla and E. M. Clarke. The complexity of prepositional linear temporal logics. 
Journal of Assoc. Comput. Mach., 32(3):733-749,1985. 

[16] G. Stalmarck and M. Saflund. Modeling and verifying systems and software in prepo- 
sitional logic. In B. K. Daniels, editor, Safety of Computer Control Systems (SAFE- 
COMP'90), pages 31-36. Pergamon Press, 1990. 

[17] P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combinational test gener- 
ation using satisfiability. Technical Report M92/112, Departement of Electrical Engineer- 
ing and Computer Science, University of California at Berkley, October 1992. 

[18] H. Zhang. SATO: An efficient prepositional prover. In International Conference on Au- 
tomated Deduction (CADE'97), number 1249 in LNAI, pages 272-275. Springer-Verlag, 
1997. 



School of Computer Science 
Carnegie Mellon University 
Pittsburgh, PA 15213-3890 

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required 
not to discriminate in admission, employment, or administration of its programs or activities 
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil 
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the 
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders. 

In addition, Carnegie Mellon University does not discriminate in admission, employment or 
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran 
status, sexual orientation or in violation of federal, state, or local laws or executive orders. 
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart- 
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian 
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe- 
less, all ROTC classes at Carnegie Mellon University are available to all students. 

Inquiries concerning application of these statements should be directed to the Provost, 
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268- 
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, 
Pittsburgh, PA 15213, telephone (412) 268-2056. 

Obtain general information about Carnegie Mellon University by calling (412) 268-2000. 


